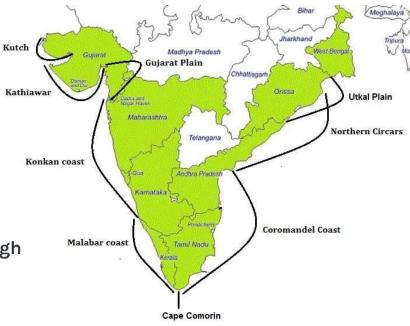
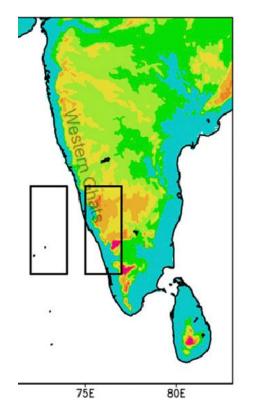
Agriculture on the coasts

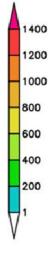
National Convention on Coastal Issues, Chennai 8 & 9, Feb 2020


Raghunath TP

Total coastline – aprox 7500 km (including islands).

- Eastern Coastal Plain
- Land lying between the eastern ghats and the oceanic boundary of India -Stretches from TN to WB.
- Rivers : Slow running due to slope: Mahanadi, Godavari, Kaveri, Krishna.
- Regions: Mahanadi Delta, Southern Andhra plain, Krishna-Godavari delta, Kanyakumari coast and the Coramandal coast etc.
- Western Coastal Plain
- A narrow strip of land sandwiched between the <u>Western Ghats</u> and the Arabian Sea
- extends from Gujarat in the north and extends through Maharashtra, Goa, Karnataka, and Kerala.
- rivers are fast-flowing, usually perennial, and empty into <u>estuaries</u>.
- Major rivers the Tapti, Narmada, <u>Mandovi</u> and <u>Zuari</u>
- the Konkan and the Malabar Coast.

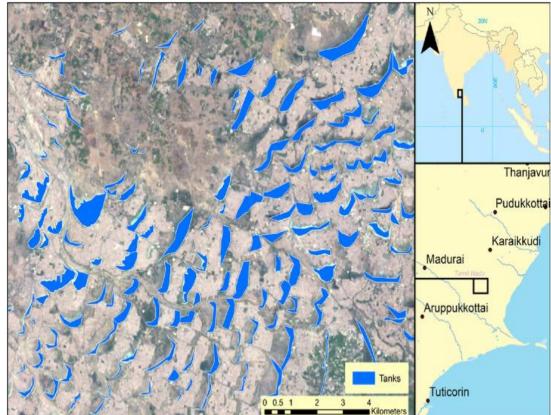

2

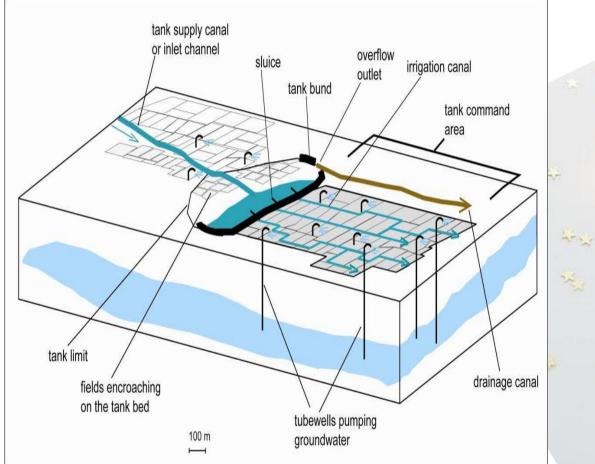


Difference in the nature of east and west coast lines.

- Eastern Coastal Plain
- Low slope.
- Spread out drainage, Highly productive-alluvial soils due to sedimentation.
- Peculiar rainfall pattern- low depression based, extreme events quite usual – not related to climate change.
- Need for traditional water harvesting structuresevolved through thousands of years.
- Western Coastal Plain
- Narrow strip
- High slope, fast flowing rivers High run-off, slow productivity in coastal agriculture.
- Well-defined rainfall patterns May be changing now due to climate change effects.
- Traditional water harvesting differs considerably from east coast.

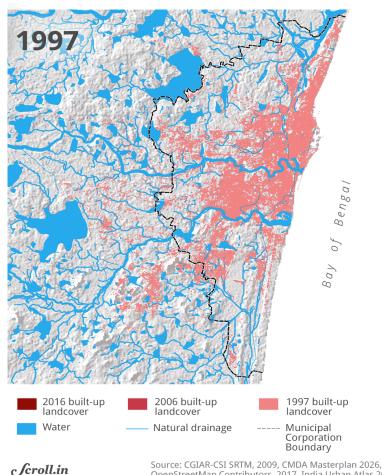
India's Coastlines




3

- High density of system-tanks.
- Due to erratic rainfall pattern and high intensity events, need for "catch when it rains".
- Tanks as flood control systems as well as water harvesting.
- Agriculture as secondary role.
- Tanks as climate mitigation systems as a proven strategyreference even in Sangam literature to the design and structure of Eris.
- Agriculture flourished across the coasts due to highly fertile soils and due to availability of water for extended periods.

Tank systems as water spaces


Tank as Water harvesting and flood control systems **Problems** – Land use changes Agriculture inside tanks - Siltation, **Chemicals-High** nitrate content -**Pollution-Destruction of** traditional inland fisheries-Reduced WHC- Floodingdeluge.....

Example of Chennai

Tanks as water spaces

What happens when land-use change ?

Urbanisation has caused encroachment upon Chennai's water bodies, disrupting drainage networks

OpenStreetMap Contributors, 2017, India Urban Atlas 2017

Coastal Agriculture

Base for agriculture? – Good soils, availability of water – alluvial soils -

East coast: Rivers - tank systems – Ponds – Shallow wells – extended availability of water.

West coast: Rivers – More distributed rain fall – Ponds.

What agriculuture: East coast – mostly rice/millets with dry periods being covered by pulses (residual moisture)- vegetables.

West coast – Narrow strips of rice- with uplands having horticulture crops also

What agriculture does to land-water?

Crops when irrigated, spreads (function of surface area) and recharges the shallow aquifers (upto 50m) – Keeps saline water pushed away. Thus contrary to the argument that agriculture takes away of lot of water (about 80-85%), most of it is recharged, evaporated and gets into water cycles and the rest is virtual water in the harvest.

Crop-lands as wet land eco systems – huge role-micro climate, water cycle, eco-system services – flood control (flood resistant crops).

Livelihoods – agriculture still continue to provide livelihoods – food security- other sectors as well.

Vulnerabilities and time-tested solutions.

There are huge number of solutions that exist for addressing the coastal vulnerabilities w.r.t to agriculture – More 3000 varieties of rice alone – Need to invest in continuous R&D to create better crop varieties that can withstand floods, salinity, higher temperatures etc. Improved highly efficient irrigation systems and nutrient management systems – (not to be confused with high input intensive agriculture- but more in line with low cost, agro-ecological interventions with high degree of knowledge, training and support systems- Better and modern granaries to stop distress sales – value added systems etc.

Need to preserve water spaces –

There can not be a compromise on water spaces- Newer urban and rural designs should emerge – vertical housing to create more water spaces – Re-distributed sewerage water treatment systems to create irrigatable water quality – decentralized SW management systems to augment Soil fertility management systems etc.

New role for existing water spaces like lakes, tanks, ponds etc. - Need to list all existing water spaces, survey, retrieve them, rehabilitate them and link them to agriculture – wetlands authority – people's initiatives for mapping and creating joint ownership – sustainable fisheries – eco tourism – Home-stays - other options – etc. Cooperative farming with a well-thought out support system from seed to produce to value additions- Producer to consumer networks- Local food systems linked to local agriculture

 Bring back the honour of agriculture – as well as to make it remunerative -

Thanks... Raghunath.T.P

tprmenon@gmail.com 94432-25288